Experiment 32: Galvanic Cells

Background Information

- Standard Cell Potential is calculated as $\mathbf{E}^{o}_{cell} = \mathbf{E}^{o}_{red} \mathbf{E}^{o}_{ox}$.
- Values for the two half-cell potentials are normally obtained from a table.

Pre-Lab Hints

- 1. Refer to Figure 32.1 as well as the Chapter 19 class notes (LEO and GER). In part c, the metal cations gain electrons to become part of the metal electrode.
- 2. Refer to the paragraph and accompanying side-notes in the Introduction that discuss the salt bridge and the internal circuit (following Figure 32.1).
- 3. Use $M_1V_1 = M_2V_2$. $M_1 = 0.10$ M. $V_1 = 0.0010$ L. $V_2 = 0.1000$ L. The result will have two significant digits.
- 4. a. The y-intercept is b in equation 32.8. Its value can be found in Figure 32.2. b. Find pCu at E = 1.050 V from Figure 32.2. Then, find $[Cu^{+2}]$ using $[Cu^{+2}] = 10^{-pCu}$.
 - c. Find pCu using pCu = $-\log[Cu^{+2}]$. Then, find E from Figure 32.2 using that pCu value.
- 5. a. Reduction (GER) occurs at the cathode (positive half-cell potential).b. Oxidation (LEO) occurs at the anode (negative half-cell potential).
 - c. First, reverse the anode reaction. Then, apply an integer factor to the cathode reaction. Add the two resulting reactions together so that the e^{-1} 's cancel out of the sum completely.
 - d. Substitute the two E^{O} values provided into the equation $E_{cell} = E_{red} E_{ox}$. Do not change any signs or apply any integer factors.
 - e. Use the number of cancelled e⁻¹'s from 5c as the n value.
 Write the expression for Q using the overall reaction from 5c.
 Substitute the concentration values provided into the expression for Q to find its value.
 Substitute the value for E_{cell} from 5d, along with the values for n and Q, into equation 32.6.
- 6. Skip.

Procedure Notes

- Do Part A only. Skip Part B and Part C.
- There are six different cell combinations between the four different half-cells.
- Be sure that each solution is matched with the same metal for its electrode.
- Work in groups of four in all of the steps, except with the unknown.
- Work in groups of two on the unknown.
- Label all of your beakers. Include the solution's identity as well as its concentration.
- When you are finished with the solutions, place them in the waste jar.
- When you are finished with the metal electrodes, reclean them as in step A1. Then, return them to their original locations.
- The black wire connects the left hole of the multimeter to the anode of your cell.
- The red wire connects the right hole of the multimeter to the cathode of your cell.
- Set the multimeter to the 2000 mV setting, and note that the reading is in mV, which will need to be converted into V for your report sheet tables.

Lab Questions

- 1. What is the value of Q at standard state, where all concentrations are 1 M? Examine equation 32.6. What is the value of E_{cell} at standard state?
- 2. When does Q = K? What is the value of E_{cell} in equation 32.6 when Q = K?
- In this experiment, Fe_(s) is used as one of the electrodes. However, not every half-cell reaction that involves an iron solution can use Fe_(s). Show the undesirable cell reaction that will occur between Fe_(s) and Fe⁺³_(aq). Also, explain how to resolve the issue with the Fe_(s) electrode. Refer to Table 19.1 (or Appendix E) in your text.
- 4. Explain why e⁻¹'s flow through the wire from anode to cathode in terms of what happens to e⁻¹'s during the oxidation and reduction reactions. Which electrode loses e⁻¹'s and which electrode gains e⁻¹'s?
- 5. The KNO₃ salt bridges are used to prevent the two half-cells from building up charges. Explain in terms of charges and e⁻¹'s why each of the two ions (K⁺¹ and NO₃⁻¹) migrates to its respective electrode (cathode and anode).

Report Sheet for Experiment 32 (Galvanic Cells)

Table 1Ecell Measurements and Half-Cell Reactions

Cell	E _{cell}	Anode	Equation for Half-Reaction	Cathode	Equation for Half-Reaction
(Anode/	Measured	Metal	at Anode	Metal	at Cathode
Cathode)	(V)				
Zn/Cu					
Mg/Cu					
Fe/Cu					
Mg/Zn					
Mg/Fe					
Zn/Fe					

Table 2 Experimental Reduction Half-Cell Potentials

Cell	E _{cell}	Cathode	Experimental Reduction	Theoretical	% Error
(Anode/	Measured	Metal	Half-Cell Potential (V)	Reduction Half-	See Note 2
Cathode)	(V)	See	$E_{\text{Red}} = E_{\text{cell}} + (-0.76 \text{ V})$ Cell Potential		
	See Note 1	Note 3		(V)	
Zn/Cu		Cu		+ 0.34 V	
Zn/Fe		Fe		– 0.44 V	
Zn/Zn	0.00	Zn		– 0.76 V	
Zn/Mg		Mg		– 2.38 V	
Zn/					
Unknown					

- Note 1: For Zn/Cu and Zn/Fe, use results from Table 1. For Zn/Mg, reverse the electrodes used for the Mg/Zn cell.
- Note 2: % Error = [(Theoretical minus Experimental) \div (Theoretical)] \times 100% Show calculations below.
- Note 3: Identify your unknown, which is one of the four metals in the experiment. Use the theoretical value of that metal in your % error calculation.
- 1. Write the balanced overall cell reactions for the cells in Table 1. Identify the oxidizing agent in each cell.

2. Add the E_{cell} values together for Zn/Cu and Mg/Zn, and compare the sum with the value for Mg/Cu. Add the overall cell reactions (from #1) together for Zn/Cu and Mg/Zn, and compare with the Mg/Cu reaction. What do you observe from these comparisons?

3. Add the E_{cell} values together for Zn/Fe and Mg/Zn, and compare the sum with the value for Mg/Fe. Add the overall cell reactions (from #1) together for Zn/Fe and Mg/Zn, and compare with the Mg/Fe reaction. What do you observe from these comparisons?